XX machine learning spain meetup y tenemos una programación de lujo para celebrarlo!! Esta es la agenda: 18:30 – Acceso al Auditorio de Campus Madrid. 18:40 – «Mapping Poverty with Machine Learning and Satellite Imagery». In developing countries that need the most resources for eliminating poverty, data on poverty is particularly scarce due to the high cost of conducting surveys. This data gap hampers efforts to study and design policies for reducing poverty. Stanford’s Sustainability and Artificial Intelligence Lab has been working towards closing this poverty data gap by estimating consumption expenditure and asset wealth from publicly available high-resolution satellite imagery. Our initial work focused on five African countries: Nigeria, Tanzania, Uganda, Malawi, and Rwanda. First, we trained a convolutional neural network to learn image features that are useful for predicting nighttime light intensities, a rough proxy for economic wealth. We then optimized the neural network by training on limited survey data. After this two-step process known as transfer learning, the convolutional neural network is able to identify image features which explain up to 75% of the variation in local-level economic outcomes. Finally, we implemented a machine learning pipeline for automating the production of global-scale poverty maps using any dataset or model. This pipeline represents a first step towards creating up-to-date poverty maps to guide nonprofit organizations and policymakers. Ponente: • Christopher Yeh Christopher Yeh is a junior undergraduate at Stanford University and studies computer science with a concentration in artificial intelligence. A native of California, he is currently studying abroad in Madrid’s International Institute for the spring quarter, learning about Spanish culture and improving his Spanish fluency. He has always been very interested in environmental sustainability. Since joining Stanford’s Sustainability and Artificial Intelligence Lab in 2016, he has helped work on the poverty mapping project, developing a scalable machine learning pipeline for estimating poverty levels in developing countries. In the past, he has interned at Intuit and Apple, working on iOS app development. Outside of academia, he enjoys volleyball, photography, outdoor activities, and playing the cello. 19:30 – «Hidden Markov Models: nuevas aplicaciones para viejos trucos«. Quien lleve suficiente tiempo atento a los avances en inteligencia artificial recordará que, antes del resurgimiento de las redes neuronales en los últimos años, otras técnicas fueron responsables de muchos avances, y entre ellas HMM ocupó un lugar destacado, sobre todo en lo que relativo al reconocimiento de voz. En esta charla descubriremos cómo, lejos de ser cosa del pasado, HMM sigue siendo una herramienta de machine learning muy relevante, con importantes avances teóricos y nuevas aplicaciones. Ponente: • José Luis Hidalgo Después de muchos años trabajando en multinacionales de consultoría (Accenture) y telecomunicaciones (Ericsson y Huawei), Jose Luis decidió dar el salto al mundo de las start-ups de la mano de Nextail Labs, una empresa española que está revolucionando la logística en el sectore de la moda a base de usar técnicas de machine learning y optimization operativa. 20:20 – ¡Cervezas y networking! Tomaremos unas cervezas y podremos seguir charlando sobre los temas de interés que salgan en esta jornada. Nos vemos el martes 13 de junio en Campus Madrid! ]]>
junio 12, 2017
abril 3, 2017
Ya está anunciado el Machine Learning Spain XVIII
Enlace Machine Learning Spain XVIII Cuando viernes 7 de abril de 2017 18:30 – 20:30 Donde Auditorio Google Campus Madrid Calle de Manzanares, 1, Madrid (mapa) Descripción Hola amigos de ML Spain, ya tenemos el planning para el siguiente meetup. Tenemos novedades ya que se va a dar por primera vez un taller, a petición de algunos de vosotros. Si os resulta interesante se harán más en los siguientes meetups. La fecha programada es el día 7 de abril (viernes) a las 18:30h en Campus Madrid. Tenemos el taller a primera hora y una charla sobre Deep Learning posteriormente. La evolución del evento y algunas fotos estarán en la cuenta de Twitter @ml_spain. La agenda será la siguiente. 18:30 – TALLER: Iniciación a Caret. 18:35 – «Tutorial del paquete caret para R». En este taller se presentará de manera práctica las capacidades principales del paquete caret, centrado en el preprocesado de datos y entrenamiento, ajuste y evaluación de modelos de Machine Learning. Si se desea seguirlo en directo, se recomienda traer un portátil propio. El código se facilitará antes de la celebración del Meetup. Ponente: • José Manuel Navarro Es Ingeniero de Telecomunicación y, actualmente, doctorando en el Departamento de Ingeniería de Sistemas Telemáticos de la Escuela de Ingenieros de Telecomunicación de la Universidad Politécnica de Madrid. Su área principal de investigación es la aplicación de Machine Learning a la gestión de redes y programa (casi) a diario en R. 19:40 – «Deep Learning para Visión Artificial con MATLAB». El reconocimiento de objetos es clave para el desarrollo de sistemas punteros como vehículos autónomos, equipos de rescate basados en imágenes y robots autónomos. En los últimos años, el Aprendizaje Profundo o Deep Learning se ha consolidado como uno de los métodos más precisos para llevar a cabo reconocimiento de objetos, llegando en ocasiones a mejorar el rendimiento humano. En esta charla, abordaremos los retos habituales en Deep Learning para Visión Artificial, utilizando ejemplos reales en los que es necesario manejar millones de imágenes para entrenar satisfactoriamente una red neuronal convolucional. Ponente: • Lucas García Es Senior Application Engineer en MathWorks especializado en Machine Learning y Big Data. Matemático de formación, trabaja con usuarios de MATLAB en todas las industrias para ayudarles a resolver problemas en áreas como Data Analytics y mantenimiento predictivo. Durante varios años ha sido también ingeniero de formación en MathWorks. Antes de unirse a MathWorks en 2008, fue desarrollador en Indizen e investigador en el INE y CSIC-MNCN. Su investigación está centrada en el uso de redes neuronales artificiales para resolver problemas de optimización combinatoria. 20:30 – ¡Cervezas y networking! Tomaremos unas cervezas y podremos seguir charlando sobre los temas de interés que salgan en esta jornada. Nos vemos el viernes 10 de febrero en Campus Madrid.]]>